Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.489
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610452

RESUMO

Hip-worn accelerometers are commonly used to assess habitual physical activity, but their accuracy in precisely measuring sedentary behavior (SB) is generally considered low. The angle for postural estimation (APE) method has shown promising accuracy in SB measurement. This method relies on the constant nature of Earth's gravity and the assumption that walking posture is typically upright. This study investigated how cardiorespiratory fitness (CRF) and body mass index (BMI) are related to APE output. A total of 3475 participants with adequate accelerometer wear time were categorized into three groups according to CRF or BMI. Participants in low CRF and high BMI groups spent more time in reclining and lying postures (APE ≥ 30°) and less time in sitting and standing postures (APE < 30°) than the other groups. Furthermore, the strongest partial Spearman correlation with CRF (r = 0.284) and BMI (r = -0.320) was observed for APE values typical for standing. The findings underscore the utility of the APE method in studying associations between SB and health outcomes. Importantly, this study emphasizes the necessity of reserving the term "sedentary behavior" for studies wherein the classification of SB is based on both intensity and posture.


Assuntos
Hominidae , Comportamento Sedentário , Humanos , Animais , Postura , Posição Ortostática , Postura Sentada
2.
BMC Geriatr ; 24(1): 308, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565979

RESUMO

BACKGROUND: The postural control and abdominal muscles' automatic activity were found to be impaired in subjects with low back pain (LBP) during static activities. However, the studies are predominantly conducted on younger adults and a limited number of studies have evaluated abdominal muscles' automatic activity during dynamic standing activities in subjects with LBP. The present study investigated the automatic activity of abdominal muscles during stable and unstable standing postural tasks in older adults with and without LBP. METHODS: Twenty subjects with and 20 subjects without LBP were included. The thickness of the transversus abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles was measured during rest (in supine), static, and dynamic standing postural tasks. To estimate automatic muscle activity, each muscle's thickness during a standing task was normalized to its thickness during the rest. Standing postural tasks were performed using the Biodex Balance System. RESULTS: The mixed-model analysis of variance revealed that task dynamicity significantly affected thickness change only in the TrA muscle (P = 0.02), but the main effect for the group and the interaction were not significantly different (P > 0.05). There were no significant main effects of the group, task dynamicity, or their interaction for the IO and EO muscles (P > 0.05). During dynamic standing, only the TrA muscle in the control group showed greater thickness changes than during the static standing task (P < 0.05). CONCLUSIONS: Standing on a dynamic level increased the automatic activity of the TrA muscle in participants without LBP compared to standing on a static level. Further research is required to investigate the effects of TrA muscle training during standing on dynamic surfaces for the treatment of older adults with LBP.


Assuntos
Dor Lombar , Humanos , Idoso , Dor Lombar/diagnóstico , Estudos Transversais , Contração Muscular/fisiologia , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Posição Ortostática , Ultrassonografia
4.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474914

RESUMO

Walking speed is a significant aspect of evacuation efficiency, and this speed varies during fire emergencies due to individual physical abilities. However, in evacuations, it is not always possible to keep an upright posture, hence atypical postures, such as stoop walking or crawling, may be required for survival. In this study, a novel 3D passive vision-aided inertial system (3D PVINS) for indoor positioning was used to track the movement of 20 volunteers during an evacuation in a low visibility environment. Participants' walking speeds using trunk flexion, trunk-knee flexion, and upright postures were measured. The investigations were carried out under emergency and non-emergency scenarios in vertical and horizontal directions, respectively. Results show that different moving directions led to a roughly 43.90% speed reduction, while posture accounted for over 17%. Gender, one of the key categories in evacuation models, accounted for less than 10% of the differences in speed. The speeds of participants under emergency scenarios when compared to non-emergency scenarios was also found to increase by 53.92-60% when moving in the horizontal direction, and by about 48.28-50% when moving in the vertical direction and descending downstairs. Our results also support the social force theory of the warming-up period, as well as the effect of panic on the facilitating occupants' moving speed.


Assuntos
Incêndios , Caminhada , Humanos , Postura , Posição Ortostática , Velocidade de Caminhada
5.
Artigo em Inglês | MEDLINE | ID: mdl-38498740

RESUMO

Balanced posture without dizziness is achieved via harmonious coordination of visual, vestibular, and somatosensory systems. Specific frequency bands of center of pressure (COP) signals during quiet standing are closely related to the sensory inputs of the sensorimotor system. In this study, we proposed a deep learning-based novel protocol using the COP signal frequencies to estimate the equilibrium score (ES), a sensory system contribution. Sensory organization test was performed with normal controls (n=125), patients with Meniere's disease (n=72) and vestibular neuritis (n=105). The COP signals preprocessed via filtering, detrending and augmenting during quiet standing were converted to frequency domains utilizing Short-time Fourier Transform. Four different types of CNN backbone including GoogleNet, ResNet-18, SqueezeNet, and VGG16 were trained and tested using the frequency transformed data of COP and the ES under conditions #2 to #6. Additionally, the 100 original output classes (1 to 100 ESs) were encoded into 50, 20, 10 and 5 sub-classes to improve the performance of the prediction model. Absolute difference between the measured and predicted ES was about 1.7 (ResNet-18 with encoding of 20 sub-classes). The average error of each sensory analysis calculated using the measured ES and predicted ES was approximately 1.0%. The results suggest that the sensory system contribution of patients with dizziness can be quantitatively assessed using only the COP signal from a single test of standing posture. This study has potential to reduce balance testing time (spent on six conditions with three trials each in sensory organization test) and the size of computerized dynamic posturography (movable visual surround and force plate), and helps achieve the widespread application of the balance assessment.


Assuntos
Aprendizado Profundo , Tontura , Humanos , Equilíbrio Postural , Postura , Posição Ortostática
7.
Clin Biomech (Bristol, Avon) ; 113: 106217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38460361

RESUMO

BACKGROUND: This study characterized the center of pressure planar displacement by palindromic strings. The objective is to test if the center of pressure pathway of able-bodied girls and those with a moderate and severe scoliosis displayed similar palindromic tendencies. METHODS: The center of pressure excursions of 21 able-bodied girls were compared to 14 girls with a moderate scoliosis and 14 girls with severe one. Each girl was asked to stand upright on a force platform for 64 s. A crisscross grid of nine areas was centered around the mean center of pressure position (G) to define three other zones to use the MATLAB built-in nucleotide sequence analysis function. These were the antero-posterior extremities A, the coronal extremities C and the tilted or the four corners of the crisscross grid, T. The center of pressure positions were associated to any of the 4 zones using the GATC acronym. FINDINGS: For all groups center of pressure pattern in decreasing order was A, G, T and C. Able-bodied girls favored the A zones. Girls with moderate scoliosis displaced their center of pressure mostly in the A zones with shifts in the T sections (P ≤ 0.001). Girls with severe scoliosis, additionally displaced their center of pressure in the C zones (P ≤ 0.001). INTERPRETATION: An ankle modality characterized able-bodied girl's standing balance. Girls with a moderate scoliosis privilege the palindromic zones in the antero-posterior extremities with excursions in the corners of the base of support, girls with severe scoliosis further relied on the medio-lateral zones, suggesting a wobbling standing balance.


Assuntos
Escoliose , Feminino , Humanos , Equilíbrio Postural , Fenômenos Mecânicos , Posição Ortostática
8.
Sci Rep ; 14(1): 4117, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374371

RESUMO

A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.


Assuntos
Doença de Parkinson , Adulto Jovem , Humanos , Idoso , Tremor , Postura , Posição Ortostática , Equilíbrio Postural
9.
Exp Brain Res ; 242(3): 745-756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38300280

RESUMO

Gaze movements during visual exploration of natural scenes are typically investigated with the static picture viewing paradigm in the laboratory. While this paradigm is attractive for its highly controlled conditions, limitations in the generalizability of the resulting findings to more natural viewing behavior have been raised frequently. Here, we address the combined influences of body posture and viewing task on gaze behavior with the static picture viewing paradigm under free viewing as a baseline condition. We recorded gaze data using mobile eye tracking during postural manipulations in scene viewing. Specifically, in Experiment 1, we compared gaze behavior during head-supported sitting and quiet standing under two task conditions. We found that task affects temporal and spatial gaze parameters, while posture produces no effects on temporal and small effects on spatial parameters. In Experiment 2, we further investigated body posture by introducing four conditions (sitting with chin rest, head-free sitting, quiet standing, standing on an unstable platform). Again, we found no effects on temporal and small effects on spatial gaze parameters. In our experiments, gaze behavior is largely unaffected by body posture, while task conditions readily produce effects. We conclude that results from static picture viewing may allow predictions of gaze statistics under more natural viewing conditions, however, viewing tasks should be chosen carefully because of their potential effects on gaze characteristics.


Assuntos
Movimentos Oculares , Fixação Ocular , Humanos , Postura , Movimento , Posição Ortostática
10.
Gait Posture ; 107: 281-286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38349937

RESUMO

BACKGROUND: The present study investigated neural mechanisms for suppressing a highly automatic balance recovery step. Response inhibition has typically been researched using focal hand reaction tasks performed by seated participants, and this has revealed a neural stopping network including the Inferior Frontal Gyrus (IFG). It is unclear if the same neural networks contribute to suppressing an unwanted balance reaction. RESEARCH QUESTION: Is there greater IFG activation when suppressing an automatic balance recovery step? METHODS: Functional near-infrared spectroscopy (fNIRS) was used to measure brain activity in 21 young adults as they performed a balance recovery task that demanded rapid step suppression following postural perturbation. The hypothesis was that the IFG would show heightened activity when suppressing an automatic balance recovery step. A lean and-release system was used to impose temporally unpredictable forward perturbations by releasing participants from a supported forward lean. For most trials (80%), participants were told to recover balance by quickly stepping forward (STEP). However, on 20% of trials at random, a high-pitch tone was played immediately after postural perturbation signaling participants to suppress a step and fully relax into a catch harness (STOP). This allowed us to target the ability to cancel an already initiated step in a balance recovery context. Average oxygenated hemoglobin changes were contrasted between STEP and STOP trials, 1-6 s post perturbation. RESULTS: The results showed a greater bilateral prefrontal response during STOP trials, supporting the idea that executive brain networks are active when suppressing a balance recovery step. SIGNIFICANCE: Our study demonstrates one way in which higher brain processes may help us prevent falls in complex environments where behavioral flexibility is necessary. This study also presents a novel method for assessing response inhibition in an upright postural context where rapid stepping reactions are required.


Assuntos
Encéfalo , Córtex Pré-Frontal , Adulto Jovem , Humanos , Encéfalo/fisiologia , Posição Ortostática , Mãos/fisiologia , Extremidade Superior , Equilíbrio Postural/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38373135

RESUMO

Sit-to-stand transition phase identification is vital in the control of a wearable exoskeleton robot for assisting patients to stand stably. In this study, we aim to propose a method for segmenting and identifying the sit-to-stand phase using two inertial sensors. First, we defined the sit-to-stand transition into five phases, namely, the initial sitting phase, the flexion momentum phase, the momentum transfer phase, the extension phase, and the stable standing phase based on the preprocessed acceleration and angular velocity data. We then employed a threshold method to recognize the initial sitting and the stable standing phases. Finally, we designed a novel CNN-BiLSTM-Attention algorithm to identify the three transition phases, namely, the flexion momentum phase, the momentum transfer phase, and the extension phase. Fifteen subjects were recruited to perform sit-to-stand transition experiments under a specific paradigm. A combination of the acceleration and angular velocity data features for the sit-to-stand transition phase identification were validated for the model performance improvements. The integration of the CNN, Bi-LSTM, and Attention modules demonstrated the reasonableness of the proposed algorithms. The experimental results showed that the proposed CNN-BiLSTM-Attention algorithm achieved the highest average classification accuracy of 99.5% for all five phases when compared to both traditional machine learning algorithms and deep learning algorithms on our customized dataset (STS-PD). The proposed sit-to-stand phase recognition algorithm could serve as a foundation for the control of wearable exoskeletons and is important for the further development of intelligent wearable exoskeleton rehabilitation robots.


Assuntos
Exoesqueleto Energizado , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Postura Sentada , Posição Ortostática
12.
Gait Posture ; 109: 298-302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412682

RESUMO

BACKGROUND: Upright quiet stance is maintained through the complex integration of sensory information from the visual, vestibular, and somatosensory systems [1]. Virtual reality (VR) is a well-established tool that has been used to study sensory contributions to balance and induce visual perturbations. Previous assessments of virtual environments have suggested that VR can be used to create various visual stimuli that affect balance [2]; however, there is limited work examining which dynamic visual stimulus, in the form of circular vection (CV), is the most effective at inducing whole body lean. RESEARCH QUESTION: Therefore, this study assessed the effects of two visual stimuli using VR to better understand their effects on postural control. METHODS: 33 healthy young adults between the ages of 18-40, free of neurological impairments, stood quietly on a force plate for 30 s while wearing a head-mounted display. Participants were exposed to a field of random white dots (DOTS) or a black and white striped tunnel (TUNNEL) that rotated in the roll plane at 60°/s clockwise or counterclockwise. Amplitude was calculated from head orientation data recorded from a head-mounted display, and centre of pressure (COP). RESULTS: Independent of visual stimuli, postural lean was in the same direction as the stimulus. The DOTS stimulus increased Head orientation and COP position compared to the TUNNEL stimulus. There was no significant main effect or interaction with direction for Head or COP data. SIGNIFICANCE: When comparing the effect of stimulus design on postural sway, a DOTS stimulus was most effective at inducing direction-modulated postural sway This study builds on our understanding of the VR-related destabilizing effects on postural control and shows evidence that a DOTS stimulus has a stronger effect than a TUNNEL stimulus. Overall, it is important to consider the design of visual stimuli when examining VR effects on upright stance.


Assuntos
Vestíbulo do Labirinto , Realidade Virtual , Adulto Jovem , Humanos , Adolescente , Adulto , Equilíbrio Postural , Posição Ortostática
13.
BMC Med Imaging ; 24(1): 35, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321400

RESUMO

BACKGROUND: Sagittal and coronal standing radiographs have been the standard imaging for assessing spinal alignment. However, their disadvantages include distortion at the image edges and low interobserver reliability in some parameters. EOS® is a low-dose biplanar digital radiographic imaging system that can avoid distortion by obtaining high-definition images. METHODS: This study aimed to evaluate spinopelvic parameters in conventional lateral C1S1 upright radiographs and EOS® images and compare them. Patients with non-deformity changes were subjected to routine clinical examinations. Plain AP and lateral X-ray radiographs were obtained along the entire spine length. Patients were also referred for full-length EOS® of the spine. Thoracic Kyphosis (TK), Lumbar Lordosis (LL), Pelvic Tilt (PT), Sacral Slope (SS), Pelvic Incidence (PI), and Sagittal Vertical Axis (SVA) were measured in the two studies by an orthopedic surgeon and a radiologist using PACS software. Also, the orthopedic surgeon evaluated the studies again after two weeks. Intra- and inter-observer reliability was then assessed using the interclass correlation coefficient (ICC). Also, the coefficient of variation was used to assess intra- and inter-observer reliability. Bland-Altman plots were drawn for each parameter. RESULTS: The mean age was 48.2 ± 6.6 years. Among the 50 patients, 30 (60%) were female. The mean ICC for TK, LL, PT, SS, PI, and SVA in EOS® images are 0.95, 0.95, 0.92, 0.90, 0.94, and 0.98, respectively, and in C1S1 radiography images, it was 0.92, 0.87, 0.94, 0.88, 0.93, and 0.98, respectively which shows good to excellent results. The coefficient of variation for intraobserver reliability was relatively low (< 18.6%), while it showed higher percentages in evaluating interobserver reliability (< 54.5%). Also, the Bland-Altman plot showed good agreement for each parameter. CONCLUSION: Spinopelvic parameters, e.g., TK, LL, SS, PI, and SS, in EOS® are reliable and comparable to those in conventional lateral upright C1S1 radiographs.


Assuntos
Cifose , Coluna Vertebral , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Reprodutibilidade dos Testes , Cifose/diagnóstico por imagem , Radiografia , Posição Ortostática , Vértebras Lombares/cirurgia , Estudos Retrospectivos
14.
Gait Posture ; 109: 201-207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350184

RESUMO

BACKGROUND: Similar impact on proprioception has been observed in participants with lumbar delayed-onset muscle soreness (DOMS) and chronic low back pain (LBP), raising questions about the relevance of lumbar DOMS as a suitable pain model for LBP when assessing back pain-related postural stability changes. RESEARCH QUESTION: Does lumbar DOMS impact postural stability? METHODS: Twenty healthy adults participated in this experimental study and underwent a posturographic examination before and 24 to 36 h after a protocol designed to induce lumbar DOMS. Posturographic examination was assessed during quiet standing on both feet with eyes opened (EO), with eyes closed (EC), and on one-leg (OL) standing with eyes opened. Postural stability was assessed through center of pressure (COP) parameters (COP area, velocity, root mean square, mean power frequency) which were compared using repeated measure ANOVA. Moreover, pain, soreness and pressure pain threshold (PPT) on specific muscles were assessed. RESULTS: There was a significant main effect of the postural condition on all COP variables investigated. More specifically, each COP variable reached a significantly higher value in the OL stance condition than in both EO and EC bipedal conditions (all with p < 0.001). In addition, the COP velocity and the mean power frequency along the anteroposterior direction both reached a significantly higher value in EC than in EO (p < 0.001). In contrast, there was no significant main effect of the DOMS nor significant DOMS X postural condition interaction on any of the COP variables. There was a significant decrease in the PPT value for both the left and right erector spinae muscles, as well as the left biceps femoris. SIGNIFICANCE: Lumbar DOMS had no impact on postural stability, which contrasts findings in participants with clinical LBP. Although DOMS induces similar trunk sensorimotor adaptations to clinical LBP, it does not appear to trigger similar postural stability adaptations.


Assuntos
Dor Lombar , Mialgia , Adulto , Humanos , Mialgia/etiologia , Região Lombossacral , Posição Ortostática , Propriocepção , Equilíbrio Postural/fisiologia
15.
Gait Posture ; 109: 226-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364509

RESUMO

BACKGROUND: Standing at height, and subsequent changes in emotional state (e.g., fear of falling), lead to robust alterations in balance in adults. However, little is known about how height-induced postural threat affects balance performance in children. Children may lack the cognitive capability necessary to inhibit the processing of threat and fear-related stimuli, and as a result, may show more marked (and perhaps detrimental) changes in postural control compared to adults. This work explored the emotional and balance responses to standing at height in children, and compared responses to young and older adults. METHODS: Children (age: 9.7 ± 0.8 years, n = 38), young adults (age: 21.8 ± 4.0 years, n = 45) and older adults (age: 73.3 ± 5.0 years, n = 15) stood in bipedal stance in two conditions: at ground level and 80 cm above ground. Centre of pressure (COP) amplitude (RMS), frequency (MPF) and complexity (sample entropy) were calculated to infer postural performance and strategy. Emotional responses were quantified by assessing balance confidence, fear of falling and perceived instability. RESULTS: Young and older adults demonstrated a postural adaptation characterised by increased frequency and decreased amplitude of the COP, in conjunction with increased COP complexity (sample entropy). In contrast, children demonstrated opposite patterns of changes: they exhibited an increase in COP amplitude and decrease in both frequency and complexity when standing at height. SIGNIFICANCE: Children and adults adopted different postural control strategies when standing at height. Whilst young and older adults exhibited a potentially protective "stiffening" response to a height-induced threat, children demonstrated a potentially maladaptive and ineffective postural adaptation strategy. These observations expand upon existing postural threat related research in adults, providing important new insight into understanding how children respond to standing in a hazardous situation.


Assuntos
Medo , Longevidade , Adulto Jovem , Criança , Humanos , Idoso , Adolescente , Adulto , Medo/psicologia , Posição Ortostática , Equilíbrio Postural/fisiologia
16.
Sci Rep ; 14(1): 4281, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383710

RESUMO

Interpersonal space (IPS) refers to the area surrounding the body in which we engage in social interactions while maintaining our comfort. Numerous previous studies have reported the psychological and physiological changes associated with the proximity of two people engaged in face-to-face interaction. Currently, there is limited knowledge about how the relative position between two socially intimate individuals affects their psychological and physiological states. This research measured the subjective discomfort and electrocardiographic responses of participants when standing static at various relative positions. The highest discomfort, lowest heart rate, and highest heart rate variability (HRV; parasympathetic activity index) were observed when the friend stood in the face-to-face position. Interestingly, heart rate also decreased when the friend stood on the right side, although HRV did not change. We interpreted the results as suggesting that the presence of a familiar person elicits the electrocardiographic responses associated with an increase in parasympathetic activity.


Assuntos
Eletrocardiografia , Posição Ortostática , Humanos , Frequência Cardíaca/fisiologia
17.
Percept Mot Skills ; 131(2): 432-445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315610

RESUMO

Impairments of postural responses are a salient feature of children with cerebral palsy (CP). While the systems approach describes balance in seven components, the relationship between trunk control and balance in children with CP has not been previously examined with all seven of these components. In this study, we aimed to identify correlations between trunk control and all seven systems approach balance components in children with bilateral spastic CP. Our participants were 30 children (M age = 11.83, SD = 2.32 years) with CP having a Gross Motor Function Classification System level ranging from I to III. We assessed trunk control with the Trunk Control Measurement Scale, including static and dynamic balance (selective voluntary control and reaching). Balance in standing was assessed using Kids-Mini-BESTest involving four domains: anticipatory, reactive, sensory orientation and stability in gait. We used Spearman's rank correlations to correlate trunk control and balance, and we obtained a moderate correlation between the trunk control measurement scale and the Kids-Mini-BESTest in children with both bilateral spastic CP (rs = .618, p < .001) and spastic diplegic CP (rs = .52, p = .02). Analysis of the correlations between separate domains of the Kids-Mini-BESTest and the trunk control measurement scale subscales revealed moderate correlations between the static sitting balance subscale and all four domains of the Kids-Mini-BESTest. The dynamic selective motor control subscale of the trunk control measurement scale moderately correlated with the anticipatory domain of the Kids-Mini-BESTest. The dynamic reaching subscale also correlated moderately with anticipatory and stability in gait domains. This correlation was statistically significant in the 13 to 17-year-old age group and was strong among females, whereas the correlation was moderate in males. Trunk control was moderately associated with balance considering all the systems theory components of balance in children with bilateral spastic cerebral palsy.


Assuntos
Paralisia Cerebral , Masculino , Criança , Feminino , Humanos , Adolescente , Espasticidade Muscular , Marcha , Equilíbrio Postural/fisiologia , Posição Ortostática
18.
Neurophysiol Clin ; 54(1): 102941, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382135

RESUMO

OBJECTIVE: To perform posturographic measurements with eyes open or closed using floor coverings with different textured surfaces to study postural control in patients with multiple sclerosis (MS). METHODS: Static posturographic recordings were performed with eyes open and eyes closed on a forceplate with no covering (control condition) or covered by a textured mat with small pimples (height 2 mm) or large pimples (height 7 mm). Several posturographic variables were measured, focusing on displacements of the center of pressure (CoP) including the average velocity (Vav), the total length (L) of all displacements, and the surface (S) of the confidence ellipse. The recordings made with the textured mats were compared to the control condition with eyes open or closed. Then, the differences between the recordings made with large vs. small pimples on the one hand, and with eyes closed vs. open were calculated to assess the impact of pimple height or eye closure on posturographic measurements. Clinical assessment was based on the Expanded Disability Status Scale (EDSS) and its functional system (FS) subscores, the Modified Fatigue Impact Scale (MFIS), the Unipodal Stance test (UST), and the Timed Up-and-Go test (TUG). RESULTS: Forty-six MS patients (mean EDSS score: 3.6) completed the study. Several posturographic variables, including Vav and L, deteriorated when measured on a textured mat, especially with large pimples and in eyes open condition. In contrast, no difference was found with small pimples and eyes closed, as compared to the control condition (no covering). The deleterious impact of pimple height on posturography correlated positively with the alteration of balance and gait clinically assessed by the UST and the TUG, and also with the MFIS physical and cerebral EDSS-FS subscores, and negatively with the cerebellar and brainstem subscores. On the other hand, the impact of eye closure on posturography was negatively correlated with the visual EDSS-FS subscore. DISCUSSION: Static posturographic measurements made with different textured surfaces and visual conditions can be considered as a sensitive tool to measure "proprioceptive reserves". Actually, when cerebellar, brainstem, or visual functions are impaired, the resources of the sensory (proprioceptive) system, if preserved, can be recruited at a higher level and compensate for dysfunctions of other postural controls to maintain a satisfactory balance. In addition, this procedure of static posturographic examination can provide objective measurements correlated with clinical testing of balance and gait and could usefully complement EDSS scoring to assess disability affecting postural control and the risk of falling in MS patients.


Assuntos
Esclerose Múltipla , Humanos , Propriocepção , Marcha , Equilíbrio Postural , Posição Ortostática
19.
Bone Joint J ; 106-B(3 Supple A): 74-80, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423083

RESUMO

Aims: Excessive posterior pelvic tilt (PT) may increase the risk of anterior instability after total hip arthroplasty (THA). The aim of this study was to investigate the changes in PT occurring from the preoperative supine to postoperative standing position following THA, and identify factors associated with significant changes in PT. Methods: Supine PT was measured on preoperative CT scans and standing PT was measured on preoperative and one-year postoperative standing lateral radiographs in 933 patients who underwent primary THA. Negative values indicate posterior PT. Patients with > 13° of posterior PT from preoperative supine to postoperative standing (ΔPT ≤ -13°) radiographs, which corresponds to approximately a 10° increase in functional anteversion of the acetabular component, were compared with patients with less change (ΔPT > -13°). Logistic regression analysis was used to assess preoperative demographic and spinopelvic parameters predictive of PT changes of ≤ -13°. The area under receiver operating characteristic curve (AUC) determined the diagnostic accuracy of the predictive factors. Results: PT changed from a mean of 3.8° (SD 6.0°)) preoperatively to -3.5° (SD 6.9°) postoperatively, a mean change of -7.4 (SD 4.5°; p < 0.001). A total of 95 patients (10.2%) had ≤ -13° change in PT from preoperative supine to postoperative standing. The strongest predictive preoperative factors of large changes in PT (≤ -13°) from preoperative supine to postoperative standing were a large posterior change in PT from supine to standing, increased supine PT, and decreased standing PT (p < 0.001). Flexed-seated PT (p = 0.006) and female sex (p = 0.045) were weaker significant predictive factors. When including all predictive factors, the accuracy of the AUC prediction was 84.9%, with 83.5% sensitivity and 71.2% specificity. Conclusion: A total of 10% of patients had > 13° of posterior PT postoperatively compared with their supine pelvic position, resulting in an increased functional anteversion of > 10°. The strongest predictive factors of changes in postoperative PT were the preoperative supine-to-standing differences, the anterior supine PT, and the posterior standing PT. Surgeons who introduce the acetabular component with the patient supine using an anterior approach should be aware of the potentially large increase in functional anteversion occurring in these patients.


Assuntos
Artroplastia de Quadril , Posição Ortostática , Humanos , Feminino , Artroplastia de Quadril/efeitos adversos , Postura , Postura Sentada , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia
20.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339590

RESUMO

Postural impairment in people with multiple sclerosis (pwMS) is an early indicator of disease progression. Common measures of disease assessment are not sensitive to early-stage MS. Sample entropy (SE) may better identify early impairments. We compared the sensitivity and specificity of SE with linear measurements, differentiating pwMS (EDSS 0-4) from healthy controls (HC). 58 pwMS (EDSS ≤ 4) and 23 HC performed quiet standing tasks, combining a hard or foam surface with eyes open or eyes closed as a condition. Sway was recorded at the sternum and lumbar spine. Linear measures, mediolateral acceleration range with eyes open, mediolateral jerk with eyes closed, and SE in the anteroposterior and mediolateral directions were calculated. A multivariate ANOVA and AUC-ROC were used to determine between-groups differences and discriminative ability, respectively. Mild MS (EDSS ≤ 2.0) discriminability was secondarily assessed. Significantly lower SE was observed under most conditions in pwMS compared to HC, except for lumbar and sternum SE when on a hard surface with eyes closed and in the anteroposterior direction, which also offered the strongest discriminability (AUC = 0.747), even for mild MS. Overall, between-groups differences were task-dependent, and SE (anteroposterior, hard surface, eyes closed) was the best pwMS classifier. SE may prove a useful tool to detect subtle MS progression and intervention effectiveness.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Entropia , Equilíbrio Postural , Posição Ortostática , Aceleração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...